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Abstract
The affinity profiles for the bovine adenosine receptors, A1 and A2A, of a series of 1,8-naphthyridine derivatives were
quantitatively analyzed using physicochemical and structural parameters of the substituents, present at varying positions of the
molecules. The derived significant correlation, for bovine A1 receptor, suggested that a R1 substituent having a higher van der
Waals volume, a R2 substituent being a hydrogen-bond donor and a R3 substituent able to transmit a higher field effect are
helpful in augmenting the pKi of a compound. Similarly the study, pertaining to bovine A2A receptor, revealed that a less bulky
substituent at R2 and a strong electron-withdrawing substituent at R3 are desirable in improving the binding affinity of a
compound while substituents at R1 remain insignificant to any interaction.

Keywords: Quantitative structure-activity relationship (QSAR), antagonists of bovine adenosine receptors, analogues of 1,
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Introduction

Adenosine is formed from the purine base adenine and

the ribose moiety. It is a ubiquitous neuromodulator in

the periphery and the central nervous system. The

biological activityof adenosinepartlyoccurs through the

activation of cell membrane belonging to the family of

G-protein coupled receptors [1,2]. Presently, four

adenosine receptors, A1, A2A, A2B and A3 have been

cloned and are characterized pharmacologically. These

receptors are associated with different second messen-

ger systems. The adenylate cyclase inhibition is

mediated through A1 and A3 receptors, whereas

adenylate cyclase activity is stimulated by A2A and A2B

because of the control of intracellular cyclic AMP levels.

The discovery of adenosine receptor subtypes opened

up new dimensions for drug treatment of a variety

of conditions such as asthma, neurodegenerative

disorders, psychosis and anxiety, chronic inflammatory

disorders and many other physiopathological states that

are believed to be associated with changes in adenosine

levels [3–6].

During last few years, a variety of different classes of

heterocyclic compounds have been reported to

possess the antagonistic activity at adenosine recep-

tors. These include xanthine, 7-deazaadenines,

7-deaza-8-azapurines [7–12], pyrazolo[3,4-c]quino-

lines [13], pyrazolo[1,5-a]pyridines [14], triazoloqui-

noxaline [15], triazoloquinazoline, pyrazolotri-

azolopyrimidine [16,17] and triazinobenzimidazo-

lones [18]. More recently, Ferrarini et al. [19] have

undertaken the synthesis and testing of a series of

1,8-naphthyridine derivatives (Figure 1) possessing a

phenyl group at position 2 and various substituents at

positions 4 and 7. These compounds were evaluated

for their affinity for different bovine adenosine

receptor subtypes. The initial structure-activity
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relationship (SAR) study on these congeners were,

however, directed to only alteration of the substituents

at different positions of the structure but no rationale

has been provided to reduce the trial-and-error

factors. Hence, a quantitative SAR (QSAR) on these

analogues was conducted since QSAR not only

provides the rationale for drug design but also

enlightens the possible mechanism of action at the

molecular level.

Materials and methods

The QSAR analysis was carried out on recently

reported [19] derivatives of 1,8-naphthyridine. These

compounds along with most appropriate quantifying

parameters of the substituents and binding affinities

for bovine A1 and A2A receptors are listed in Table I.

The quantifying parameters such as hydrogen-bond

donor, HD, Field, F, and electronic, s are taken from

the compilation of Hansch et al. [20] whereas the

structural parameter, the van der Waals volume Vw for

a given substituent was calculated according to the

method discussed in one of our publications [21]. The

subscripted numerals following the independent

variables are indicative of the varying positions of

title compounds. The binding affinities were derived

from the inhibition of specific [3H]N6-(cyclohexyl)a-

denosine ([3H]CHA) binding to bovine brain cortical

membranes. For present work, the affinity constants

Ki pertaining to bA1 and bA2A receptor subtypes are

expressed as pKi on molar basis.

The multiple regression analysis (MRA), employing

the method of least squares, was used to derive

significant correlation equations. The derived QSAR

equations were subjected to a validation test such as

the leave-one-out (LOO) [22,23] and leave-group-out

(LGO) [23] methods. In the LOO method, a number

of modified data sets were generated by taking away

one compound successively from the parent data set.

Then models were developed for each reduced data

set and the response values of the deleted observations

were predicted from these models. Based on the

prediction error sum of squares (PRESS) and sum of

squares of deviations of the experimental values from

their mean (SSY) statistics, the q2
LOO value was

calculated. The value of q2
LOO . 0.6 represents a

robust QSAR model. In LGO method, three test sets,

each representing nearly 25% of total data points,

were selected. Of the three test sets, two were obtained

from the cluster patterns generated in the SYSTAT

[24] using the single linkage hierarchical cluster

procedure involving the Euclidean distances of the

respective descriptors or the activity as the case may

be. The selection of the test set from the cluster tree

has been done in such a way to keep the test

compounds at a maximum possible distance from

each other. The third test set of the compounds

corresponds to the random selection procedure. With

this, these test sets represent different cross-sections of

compounds. The predictions of the test sets have been

done with the models developed using remaining

compounds in the corresponding training sets. The

derived q2
EXT index, for each model equation, is given

along with other statistical parameters. Finally, the

randomization study was carried out to ensure the

robustness and predictive power of derived QSAR

model. In this approach, the dependent variable, pKi

is randomly shuffled and a new QSAR model is

developed using the original independent variable

matrix. After 100 simulations, all new QSAR models

are expected to have lower R2 values compared to the

R2 value obtained for original model equation. If

opposite happens then an acceptable QSAR model

cannot be obtained for the specific modeling method

and data.

Results and discussion

Table I lists a series of 1,8-naphthyridine derivatives

(Figure 1) bearing mostly phenyl group at 2-position

and different substituents at 4- and 7-positions. In

order to account for effects produced by such

substituents, a large number of descriptors related to

the major interactions namely the hydrophobic,

electronic and the steric were initially examined for

three varying positions of the 1,8-naphthyridine ring

in various possible permutations. The selected

parameters for various substituents, for each of these

positions were the hydrophobicity, p, hydrogen-bond

donor, HD, hydrogen-bond acceptor, HA, electronic

(meta and para), s, field, F, resonance, R, dipole

moment, m, Taft’s steric, Es, molar refraction,

MR, molecular weight, MW, and the van der Waals

volume, Vw . This resulted into a large number of

QSAR equations, which were then subjected to

different statistical tests. The correlation equations,

which returned the highest correlation coefficient, R

and F-statistic and lowest standard deviation, s are

finally retained for further discussion. The highest

significant correlation that was obtained is shown in

Figure 1. The derivatives of 1,8-naphthyridine.
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Table I. QSAR parameters and affinities of 1,8-naphthyridine derivatives at the bovine brain A1 and A2A receptors (Figure 1 for structure).

pKi (M)a

S No. R1 R2 R3

Vw1 Vw2

HD2 F3 s3

bA1 bA2A

(102Å 3) Obsd Cald Eq.(2) Prcd Obsd Cald Eq.(5) Prcd

1 Ph OH Me 0.785 0.137 1 20.04 20.17 8.28 7.66 7.62 6.34 6.28 6.28

2 Ph SH Me 0.785 0.260 1 20.04 20.17 7.10 7.66 7.69 5.90 5.88 5.87

3 Ph Cl Me 0.785 0.244 0 20.04 20.17 6.00 5.86 5.84 –b – –

4 Ph OMe Me 0.785 0.304 0 20.04 20.17 5.22 5.86 5.96 –b – –

5 Ph OPh Me 0.785 0.844 0 20.04 20.17 6.09 5.86 5.83 –b – –

6 Ph NH2 Me 0.785 0.177 1 20.04 20.17 7.77 7.66 7.65 6.35 6.15 6.14

7 Ph NMe2 Me 0.785 0.551 0 20.04 20.17 6.26 5.86 5.80 5.12 4.92 4.64

8 p-F-Ph OH Me 0.831 0.137 1 20.04 20.17 8.28 7.80 7.77 6.20 6.28 6.29

9 o-F-Ph OH Me 0.831 0.137 1 20.04 20.17 7.96 7.80 7.79 6.33 6.28 6.28

10 Ph OH Br 0.785 0.137 1 0.44 0.23 9.15 9.01 8.98 7.18 6.91 6.83

11 Ph OH Cl 0.785 0.137 1 0.41 0.23 9.82 8.93 8.75 7.00 6.91 6.88

12 Ph OH F 0.785 0.137 1 0.43 0.06 8.39 8.99 9.12 6.77 6.64 6.62

13 Ph OH H 0.785 0.137 1 0.00 0.00 7.80 7.77 7.77 –b – –

14 Ph OH OPh 0.785 0.137 1 0.34 20.03 7.59 8.73 8.89 5.72c 6.50 –

15 Ph OH OEt 0.785 0.137 1 0.22 20.24 8.28 8.39 8.40 –b – –

16 Ph OH OMe 0.785 0.137 1 0.26 20.27 8.80 8.50 8.48 5.90 6.13 6.14

17 Ph H Me 0.785 0.056 0 20.04 20.17 5.16 5.86 5.97 –b – –

18 p-NO2-Ph OH Me 0.972 0.137 1 20.04 20.17 8.00 8.26 8.29 6.34 6.28 6.28

19 Ph NHNH2 Me 0.785 0.286 1 20.04 20.17 7.00 7.66 7.70 5.74 5.79 5.80

20 Ph OH NH2 0.785 0.137 1 0.02 20.66 8.28 7.83 7.80 5.23 5.52 5.61

21 Ph OH NMe2 0.785 0.137 1 0.10 20.83 9.25 8.05 8.00 5.60 5.25 5.00

22 Ph OEt Br 0.785 0.458 0 0.44 0.23 7.30 7.22 7.19 5.58 5.85 6.02

23 Ph OEt OEt 0.785 0.458 0 0.22 20.24 6.54 6.60 6.61 –b – –

24 Ph OH NHAc 0.785 0.137 1 0.28 0.00 6.47c 8.56 – –b – –

25 Ph SMe Me 0.785 0.423 0 20.04 20.17 6.42 5.86 5.78 –b – –

26 p-NH2-Ph OH Me 0.884 0.137 1 20.04 20.17 8.17 7.98 7.96 6.30 6.28 6.28

27 p-AcNH-Ph OH Me 1.221 0.137 1 20.04 20.17 9.00 9.07 9.10 5.66 6.28 6.32

28 m-NO2-Ph OH Me 0.972 0.137 1 20.04 20.17 7.82 8.26 8.31 6.28 6.28 6.28

29 m-NH2-Ph OH Me 0.884 0.137 1 20.04 20.17 7.64 7.98 8.00 6.60 6.28 6.26

30 CH2Ph OH Me 0.945 0.137 1 20.04 20.17 5.72c 8.17 – –b – –

31 H OH Me 0.056 0.137 1 20.04 20.17 5.15 5.29 5.55 –b – –

32 n-Pr OH Me 0.595 0.137 1 20.04 20.17 7.32 7.04 7.01 6.05 6.28 6.30

33 n-Pr OH NH2 0.595 0.137 1 0.02 20.66 6.68 7.21 7.26 –b – –

aThe affinities, determined in terms of binding constant, Ki, for bA1 and bA2A receptor subtypes and were derived from the inhibition of specific [3H]CHA binding to bovine brain cortical membranes;

taken from Ref. (19); baffinity value is not reported; c ‘outlier’ compound of present study.
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Equation (1)

pKiðbA1Þ ¼ 2:839ð^1:65ÞVw1 þ1:618ð^0:64ÞHD2

þ2:682ð^1:61ÞF3 þ3:754

n¼ 33;R ¼ 0:804;s¼0:772;Fð3;29Þ ¼ 17:611;

FIT¼ 1:259;AIC¼ 0:691; q2
Loo ¼ 0:563;LOF¼ 0:831

ð1Þ

As given above, n and F represent respectively the

number of data points and the F-ratio between the

variances of calculated and observed activities. The ^

data within the parentheses are the 95% confidence

intervals. FIT is the Kubinyi function [25,26], AIC is

the Akaike’s information criterion [27,28] and LOF is

the Friedman’s lack of fit factor [29]. The FIT

function is closely related to the F-statistic but proved

to be a useful parameter for the assessment of the

quality of the models [27,28]. The disadvantage of the

F value is its sensitivity to changes in the number of

independent variables, k in the equation that describes

the model. The F value is more sensitive if k is small,

whereas it is less sensitive if k is large. The FIT

function, on the other hand, is less sensitive to a lower

number k but is more sensitive to a larger number k.

The best model would yield the highest value for this

function. The AIC takes into account the statistical

goodness of fit and the number of parameters that

have to be estimated to achieve that degree of fit. The

model that produces the lower AIC value should be

considered potentially the most useful. The LOF

factor takes into account the number of terms used in

the equation and is not biased, as are the indicator

variables, toward large number of parameters. A

statistical sound model will generate the lower value of

LOF. In a comparative study, where QSAR models are

generated from the descriptors belonging to different

categories, the FIT function, the AIC criterion and the

LOF factor are very important parameters in

explaining the best model equation [30–32]. Even in

stepwise development of a QSAR equation, these

parameters may play crucial role in ascertaining the

overall significance of final model.

From Equation (1), it appears that R3 substituents

are engaged in electronic interaction while R2

substituents are involved in hydrogen-bond donor

interaction. The Vw1 variable, accounting for mol-

ecular bulk, hints at the involvement of R1 substituents

in steric interaction. The derived statistical parameters

of this equation, per se, do not account for the

significant results as the R2 value accounted only for

64% of the variance and q2
Loo remained close to a

specified level of significance (0.5). However, the F-

value is significant at 99% [F3,29(0.01) ¼ 4.538].

These findings reflect simply upon the parametric

requirements of the substituents in a compound that

may lead to binding at bA1 receptor.

In order to improve upon the significance levels of

Equation (1), all data points in Table I, were further

analyzed for their deviation from regular trend.

Compounds 24 and 30 (Table I) are such congeners

whose residuals are large (.1.0). It should be noted

that it is not acceptable to remove certain compound

from a QSAR analysis simply for improving a

correlation. There must be certain reason to treat

such a compound as an outlier. The lone compound

24 having a -NHCOCH3 substituent at R3 seems to

behave abnormally due to an acetyl moiety adjacent to

nitrogen atom. Comparatively, this moiety reduces

electron density from 1,8-naphthyridine scaffold and

therefore, elicits lower binding affinity than the

expected value. Similarly, the introduction of a

methylenic group between the naphthyridine nucleus

and the phenyl group (ZCH2Ph at R1) in compound

30, renders it to exhibit lower activity possibly due to

the mismatch with transmembranal region of bA1

receptor. At removal of these two compounds from the

training set, the next correlation is obtained as in

Equation (2)

pKiðbA1Þ ¼ 3:244ð^1:18ÞVw1 þ 1:793ð^0:46ÞHD2

þ 2:831ð^1:16ÞF3 þ 3:429

n ¼ 31;R ¼ 0:908; s ¼ 0:540;Fð3; 29Þ ¼ 42:202;

FIT ¼ 3:170;AIC ¼ 0:341; q2
Loo ¼ 0:778;

q2
EXT ¼ 0:915;LOF ¼ 0:419 ð2Þ

Now both the R- and F-values are increased to

account respectively for 82% (R2 ¼ 0.824) of variance

in the observed activities and 99% level of significance

[F3,27(0.01) ¼ 4.601].

In addition, the ^ data within parentheses are

lowered and the q2
Loo index is increased. The latter

index hints at a reasonable robust QSAR model.

Compared to Equation (1), the FIT is now increased

while the AIC, and the LOF are decreased. Equation

(2) is further subjected to external validation and

randomization tests. For external validation nearly

25% compounds of total number were selected for a

test set while remaining compounds were retained in

the training set. Three test sets were generated

following the strategy of having the compounds at a

maximum possible distance from each other so that

they represent different cross-sections of all the data

points. Two sets were obtained from the cluster

patterns generated in SYSTAT, based on the

descriptors and the activity while the third set

corresponds to the random selection procedure. The

predictions of these test sets were made with the model

equations developed using remaining compounds in

B. K. Sharma et al.440



the training sets. The compounds selected for test sets,

derived correlation equations from data in training

set along with statistical parameters and the residuals,

pKi(obsd) – pKi(prcd), are given in Table II. The

statistical parameter q2
EXT, obtained for Equation (2),

has accounted for a better robust and predictive

QSAR model. Finally, the activity values were

randomly shuffled and a new model was developed

using the original independent descriptor matrix. The

process was repeated 100 times to derive every time a

new model equation and associated statistical par-

ameters. None of these models could yield the R2-

values higher than that obtained for Equation (2).

This further supported for a statistically sound QSAR

model. The required orthogonality conditions,

amongst the independent variables of Equation (2),

are shown in Table III. The calculated binding

activities, using Equation 2 (listed in Table I), were

remained in close agreement with the observed ones.

The predicted values of the same, obtained from the

LOO approach, are also included in Table I for the

sake of comparison. The plot of observed versus

calculated and predicted pKi values is shown in

Figure 2. Such a plot is useful to understand the

goodness of fit and to identify systematic trend. From

Equation (2), it appeared that R1 substituent having

higher van der Waals volume, R2 substituent being a

hydrogen-bond donor and R3 substituent able to

transmit higher field effect are helpful in augmenting

the pKi of a compound. Such a strategy may,

therefore, be followed in designing new compounds

of the series.

The data in Table I show that only 21 compounds

have been evaluated for the affinity towards bovine

A2A receptor. In order to reveal the possible

mechanism of action at this receptor, these data

were subsequently subjected to the MRA. A

significant correlation that was emerged is shown in

Equation (3)

pKiðbA2AÞ ¼ 23:106ð^1:26ÞVw2 þ 1:466ð^0:58Þs3

þ 6:911

n ¼ 21;R ¼ 0:847; s ¼ 0:301;

Fð2; 18Þ ¼ 22:872;FIT ¼ 1:827;AIC ¼ 0:104;

q2
Loo ¼ 0:583;LOF ¼ 0:150

ð3Þ

where R2 accounted for 72% of variance in the observed

pKis and F-value remained significant at 99% level

[F2,18(0.01) ¼ 6.013]. Also, the value obtained for

q2
LOO showed that the derived model is statistically

sound.Above Equation reflected upon the roleof R2 and

R3 substituents only while the R1 substituents remain

insensitive to any interaction. This implies that the

naphthyridine derivatives interact differently at two

aforesaid receptors. The same is also apparent from

a poor correlation, derived between pKi(bA1) and

pKi(bA2A), shown in Equation (4)

pKiðbA1Þ ¼ 0:747ð^0:667ÞpKiðbA2AÞ þ 3:494

n ¼ 21; r ¼ 0:474; s ¼ 0:766;Fð1; 19Þ ¼ 5:505;

FIT ¼ 0:250;AIC ¼ 0:612 ð4Þ

The limited structural differences that exist in the

transmembranal region of the two receptors, bA1AR

and bA2AAR, perhaps influenced the ability of the title

compounds to interact differently with these recep-

tors. Equation (3) was further improved by ignoring a

lone compound 14, bearing a phenoxy group at R3.

This bulky substituent may not be accommodated

Table II. Test sets, derived correlations on training set by external validation method and residuals of compounds of test sets.

Compounds in

Test seta Derived equation from data in training setb
Residuals [pKi (Obsd) – pKi

(Prcd)]

For bA1 receptor subtype

4, 8, 13, 16, 22,

27, 28, 31

pKi (bA1) ¼ 3.148(^ 3.50)Vw1 þ1.711(^ 0.61)HD2 þ2.618(^ 1.57)F3 þ3.599

n ¼ 23, R ¼ 0.876, s ¼ 0.599, F(3,19) ¼ 20.807

0.74, 0.46, 0.02, 0.34, 0.08,

20.05, 20.45,

20.23

2, 7, 11, 14, 15,

16, 19, 28, 31

pKi (bA1) ¼ 3.013(^ 1.90)Vw1 þ1.936(^ 0.48)HD2 þ2.664(^ 1.35)F3 þ 3.564

n ¼ 23, R ¼ 0.917, s ¼ 0.497, F(3,19) ¼ 33.600

0.44, 0.86, 21.18,

20.17, 0.24, 2 0.76,

20.50, 20.41

1, 5, 9, 13, 17,

21, 26, 33

pKi (bA1) ¼ 3.100(^ 1.16)Vw1 þ1.616(^ 0.51)HD2 þ2.877(^ 1.17)F3 þ3.617

n ¼ 23, R ¼ 0.920, s ¼ 0.509, F(3,19) ¼ 35.044

0.73, 0.15, 0.27, 0.13,

2 0.78, 1.30, 0.31,

2 0.46

For bA2A receptor subtype

2, 5, 15, 16, 21 pKi (bA2A) ¼ 2 2.795(^ 1.17)Vw2 þ2.122(^ 0.62)s3 þ 7.003

n ¼ 15, R ¼ 0.938, s ¼ 0.221, F(2, 12) ¼ 43.930

20.02, 20.06, 0.74,

20.63, 20.21

4, 7, 12, 18, 21 pKi (bA2A) ¼ 2 4.149(^ 1.31)Vw2 þ1.576(^ 0.43)s3 þ 7.176

n ¼ 15, R ¼ 0.932, s ¼ 0.187, F(2, 12) ¼ 39.913

0.50, 0.21, 0.00, 20.68,

20.29

2, 6, 11, 15, 19 pKi (bA2A) ¼ 2 3.347(^ 1.18)Vw2 þ1.877(^ 0.68)s3 þ 7.030

n ¼ 15, R ¼ 0.917, s ¼ 0.262, F(2, 12) ¼ 31.634

0.06, 0.08, 20.16, 0.59,

0.03

aSee numbering in Table I; bonly the final Equations (2) and (5) were subjected to external validation.
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properly in the narrow binding pocket of bA2AAR.

Additionally, the poor electron-withdrawing effect

revealed by this substituent may further add negatively

to activity. The resulting significant correlation is

shown in Equation (5)

pKiðbA2AÞ ¼ 23:296ð^1:07ÞVw2 þ 1:562ð^0:49Þs3

þ 6:999

n ¼ 20;R ¼ 0:900; s ¼ 0:251;Fð2; 17Þ

¼ 36:178;FIT ¼ 3:016;AIC ¼ 0:073

q2
Loo ¼ 0:674;q2

EXT ¼ 0:833;LOF ¼ 0:121
ð5Þ

Compared to Equation (3), the R2 value is increased

to account for 81% of variance in the observed binding

affinities. The F-value, remaining significant at 99%

level [F2,17(0.01) ¼ 6.112] is also increased and q2
LOO

index now reveals a reasonable significant QSAR

model. The increased values of FIT and decreased

values of AIC and LOF have further supported the

strength of this model. Equation (5) was also

subjected to external validation method by consider-

ing three test sets, each comprising of five compounds.

The data for remaining fifteen compounds in each of

the corresponding training sets have resulted in to

model equations, included in Table II. The residuals

obtained for compounds in test sets are also listed in

this Table. The q2
EXT statistics, obtained in this way,

has further validated the derived model Equation (5).

In randomization study, the activity values were

shuffled to derive a new model. After 100 such

shuffling, all the models were analyzed for the

variances accounted by them. None of these models

resulted into R2 values higher than 81%, the variance

accounted by model Equation (5).

From Equation (5), it appears that a less bulky

substituent at R2 and a strong electron-withdrawing

substituent at R3 are desirable in improving the

binding affinity of a compound at bovine A2A receptor.

The calculated and predicted binding activities of

compounds, included in Table I, are in analogy with

the observed ones. That the variables of Equation (5)

are mutually orthogonal is shown in Table IV.

The inferences drawn from present QSAR study

for interaction at bovine A1 and A2A receptors may

therefore be used in the synthesis of further similar

compounds.

References

[1] Olah M, Stiles G. The role of receptor structure in determining

adenosine receptor activity. Pharmacol Ther 2000;85:55–75.

[2] Impagnatiello F, Bastia E, Ongini E, Monopoli A. Adenosine

receptors in neurological disorders. Emerging Ther Targets

2000;4:635–663.

[3] Jacobson KA, Kim HO, Siddiqi SM, Olah ME, Stiles GL,

Lubitz D. A3-adenosine receptors: Design of selective ligands

and therapeutic prospects. Drugs Future 1995;20:689–699.

[4] Feoktistov I, Polosa R, Holgate ST, Biaggioni I. Adenosine A2A

receptors: A novel therapeutic target in asthma? Trends

Pharmacol Sci 1998;19:148–153.

[5] Müller CE, Stein B. Adenosine receptor antagonist: Structure

and potential therapeutic applications. Curr Pharm Des

1996;2:501–530.

[6] Poulsen S-A, Quinn RJ. Adenosine receptors: New opportu-

nities for future drugs. Bioorg Med Chem 1998;6:619–641.

[7] Betti L, Biagi G, Giannaccini G, Giorgi I, Livi O, Lucachini A,

Manera C, Scartoni V. Novel 3-Aralkyl-7-(aminosubstituted)-

1,2,3-triazolo[4,5-d]pyrimidines with high affinity towards

A1adenosine receptors. J Med Chem 1998;41:668–673.

Table IV. Intercorrelation matrixa amongst independent variables

of Equation (5).

Vw2 s3

Vw2 1.000 0.212

s3 1.000

aSee footnote under Table III.

Figure 2. The plot of observed versus calculated and predicted pKi

values.

Table III. Intercorrelation matrixa amongst independent variables

of Equation (2).

Vw1 HD2 F3

Vw1 1.000 0.001 0.012

HD2 1.000 0.057

F3 1.000

aMatrix elements are the r-values

B. K. Sharma et al.442



[8] Camaioni E, Costanzi S, Vittori S, Volpini R, Klotz K-N,

Cristalli G. New substituted 9-alkylpurines as adenosine

receptor ligands. Bioorg Med Chem 1998;6:523–533.

[9] Pfister JR, Belardinelli L, Lee G, Lum RT, MilnerP, Stanley WC,

Linden J, Baker SP, Schreiner GJ. Synthesis and biological

evaluation of the enantiomers of the potent and selective

A1 adenosine antagonists. J Med Chem 1997;40:1773–1778.

[10] Katsushima T, Nieves L, Wells JN. Structure-activity relation-

ships of 8- cycloalkyl-1,3-dipropylxanthines as antagonists of

adenosine receptors. J Med Chem 1990;33:1906–1910.

[11] Müller CE. A1-adenosine receptor antagonists. Expert Opin

Ther Pat 1997;5:419–440.

[12] Poulsen S-A, Quinn RJ. Synthesis and structure activity

relationships of pyrazolo[3,4-d]pyrimidines: Potent and

selective adenosine A1 receptor antagonist. J Med Chem

1996;39:4156–4161.

[13] Colotta V, Catarzi D, Varano F, Cecchi L, Filacchioni G,

Martini C, Trincavelli L, Lucacchini A. Synthesis and

structure activity relationships of a new set of 2-arylpyra-

zolo[3,4-c]quinoline derivatives as adenosine receptor antag-

onists. J Med Chem 2000;43:3118–3124.

[14] Kuroda S, Akahane A, Itani H, Nishimura S, Durkin K,

Kinoshita T, Tenda Y, Sakane K. Discovery of FR 166124, a

novel water-soluble pyrazolo[1,5-a]pyridine adenosine A1

receptor antagonists. Bioorg Med Chem Lett 1999;9:

1979–1984.

[15] Colotta V, Catarzi D, Varano F, Cecchi L, Filacchioni G,

Martini C, Trincavelli L, Lucacchini A1. 2,4-Triazolo[4,3-

a]quinoxalin-1-one: A versatile tool for the synthesis of potent

and selective adenosine receptor antagonist. J Med Chem

2000;43:1158–1164.

[16] Baraldi PG, Cacciari B, Spalluto G, Pineda de Las Infantasy

Villatoro MJ, Zocchi C, Dionisotti S, Ongini E. Pyrazolo[4,3-

e]-1,2,4-triazolo[1,5-c]pyrimidines as potent and selective A2A

adenosine receptor antagonist. J Med Chem 1996;39:

1164–1171.

[17] Ongini E. SCH 58261: A selective adenosine receptor

antagonists. Drug Dev Res 1997;42:63–70.

[18] Da Settimo F, Primofiore G, Taliani S, Marini AM, La Motta C,

Novellino E, Greco G, Lavecchia A, Trincavelli L, Martini C. 3-

Aryl[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-ones: A novel

class of selective A1 adenosine receptor antagonists. J Med Chem

2001;44:316–327.

[19] Ferrarini PL, Betti L, Cavallini T, Giannaccini G, Lucacchini A,

ManeraC,Martinelli A, OrtoreG,Saccomanni G, Tuccinardi T.

Study on affinity profile toward native human and bovine

adenosine receptors of a series of 1,8-Naphthyridine derivatives.

J Med Chem 2004;47:3019–3031.

[20] Hansch C, Leo A. Substituents constants for correlation

analysis in chemistry and biology. New York: John Wiley;

1979.

[21] Gupta SP, Bhatnagar RP, Singh P, Bindal MC. The

relationship of cellular respiration inhibition activity of 7-

substituted-4-hydroxyquinoline-3-carboxylic acids with van

der Waals volume. Res Commun Chem Pathol Pharmacol

1979;25:111–119.

[22] Wold S. Validation of QSARs. Quant Struct-Act Relat

1991;10:191–193.

[23] Wold S, Eriksson L. Statistical validation of QSAR results.

Validation tools. In: van de Waterbeemd H, editor. Chemo-

metrics methods in molecular design. Weinheim: VCH; 1995.

p 309–318.

[24] SYSTAT., Version 7.0: SPSS Inc, 444 North Michigan Avenue,

Chicago, II. 60611

[25] Kubinyi H. Variable selection in QSAR studies. I. An

evolutionary algorithm. Quant Struct-Act Relat

1994;13:285–294.

[26] Kubinyi H. Variable selection in QSAR studies. II. A highly

efficient combination of systematic search and evolution.

Quant Struct-Act Relat 1994;13:393–401.

[27] Akaike H. Information theory and an extension of the

minimum likelihood principle. In: Petrov BN, Csaki F, editors.

Second international symposium on information theory.

Budapest: Akademiai Kiado; 1973. p 267–281.

[28] Akaike H. A new look at the statistical identification model.

IEEE Trans Autom Control 1974;AC-19:716–723.

[29] Friedman J, Multivariate adaptive regression splines Technical

report no. 102, Laboratory for computational statistics.

Stanford: Stanford University; November 1988.

[30] Gonzalez MP, Caballero J, Tundidor-Camba A, Helguera

AM, Fernandez M. Modelling of farnesyltransferase inhibition

by some thiol and non-thiol peptidomimetic inhibitors using

genetic neural networks and RDF approaches. Biorg Med

Chem 2006;14:200–213.

[31] Saiz-Urra L, Gonzakez MP, Teijeira M. QSAR studies about

cytotoxicity of benzophenazines with dual inhibition toward

both topoisomerases I and II: 3D-MoRSE descriptors and

statistical considerations about variable selection. Biorg Med

Chem 2006;14:7347–7358.

[32] Saiz-Urra L, Gonzakez MP, Teijeira M. 2D-autocorrelation

descriptors for predicting cytotoxicity of naphthoquinone ester

derivatives against oral human epidermoid carcinoma. Biorg

Med Chem 2007;15:3565–3571.

QSAR of 1,8-Naphthyridines as adenosine receptor antagonists 443




